Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 98: 70-77, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28041976

RESUMO

Cryptome is as a subset of a given proteome containing bioactive cryptides embedded in larger peptides or proteins. We pinpointed a striking sequence similarity between two peptides from the Tityus serrulatus venom: Ts10 (KKDGYPVEYDRAY) and the N-terminal of Ts3 (KKDGYPVEYDNCAY). Ts3 (former Tityustoxin or TsIV) is an α-neurotoxin acting on voltage-gated sodium channels while Ts10 (former Peptide T) is a bradykinin-potentiating peptide and was originally reported as inhibitor of the angiotensin-converting enzyme (ACEi). Thus, the goal of this study was to evaluate whether such peptide hidden in the N-terminal of Ts3 (Ts31-14[C12S]) was able to mimic known effects of Ts10 as well as to expand the current knowledge of the vascular effects and molecular targets of these peptides. Similar to Ts10, Ts31-14[C12S] was able to potentiate the hypotensive effect of bradykinin (BK). However, none of these peptides was able to induce a long-lasting BK-potentiating effect, suggesting that this effect may not be their main biological outcome. On the other hand, we report that Ts10 and mainly Ts31-14[C12S] induced a strong vasodilation effect depending on the presence of functional endothelium and nitric oxide (NO) production. Unlike previously reported, Ts10 was not able to inhibit ACE activity (similar result was observed for Ts31-14[C12S]). On the other hand, we report that Ts31-14[C12S] induces vasodilation via the activation of muscarinic acetylcholine receptors (mAChRs) M2 and M3 while only the activation of mAChR M2 seems to be required for Ts10-induced vasodilation.


Assuntos
Receptor Muscarínico M2/agonistas , Receptor Muscarínico M3/agonistas , Venenos de Escorpião/farmacologia , Vasodilatadores/farmacologia , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Humanos , Masculino , Modelos Animais , Peptidil Dipeptidase A/efeitos dos fármacos , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
2.
FASEB J ; 30(12): 4172-4179, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27601438

RESUMO

Nonsteroidal antiinflammatory drugs, including ibuprofen, are among the most commonly used medications and produce their antiinflammatory effects by blocking cyclooxygenase (COX)-2. Their use is associated with increased risk of heart attacks caused by blocking COX-2 in the vasculature and/or kidney, with our recent work implicating the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), a cardiotoxic hormone whose effects can be prevented by l-arginine. The ibuprofen salt ibuprofen arginate (Spididol) was created to increase solubility but we suggest that it could also augment the NO pathway through codelivery of arginine. Here we investigated the idea that ibuprofen arginate can act to simultaneously inhibit COX-2 and preserve the NO pathway. Ibuprofen arginate functioned similarly to ibuprofen sodium for inhibition of mouse/human COX-2, but only ibuprofen arginate served as a substrate for NOS. Ibuprofen arginate but not ibuprofen sodium also reversed the inhibitory effects of ADMA and NG-nitro-l-arginine methyl ester on inducible NOS (macrophages) and endothelial NOS in vitro (aorta) and in vivo (blood pressure). These observations show that ibuprofen arginate provides, in one preparation, a COX-2 inhibitor and NOS substrate that could act to negate the harmful cardiovascular consequences mediated by blocking renal COX-2 and increased ADMA. While remarkably simple, our findings are potentially game-changing in the nonsteroidal antiinflammatory drug arena.-Kirkby, N. S., Tesfai, A., Ahmetaj-Shala, B., Gashaw, H. H., Sampaio, W., Etelvino, G., Leão, N. M., Santos, R. A., Mitchell, J. A. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis.


Assuntos
Arginina/análogos & derivados , Ciclo-Oxigenase 2/metabolismo , Ibuprofeno/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Arginina/metabolismo , Arginina/farmacologia , Combinação de Medicamentos , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...